Olympus 15-Ton

AT A GLANCE

- Automated Hydraulic Press
- ▶ Variable force from 1 to 15 US tons
- Fully automated for consistent and reproducible results
- ► Easy to use touch-screen programming
- Wide access door with transparent window and safety interlock

The Olympus 15-Ton microprocessor controlled automated hydraulic press introduces an element of consistency into hydraulic press applications such as KBr pellet making.

Pressure and corresponding hold time are easily entered through its integrated touch-screen control panel. Up to four pressure hold time and ramps may be programmed and performed within a run. During operation the force measurement is shown on the bright color display. This level of control enhances the uniformity and quality of transmission samples.

PART NUMBER	DESCRIPTION	
181-1365	Olympus Hydraulic Press	
181-1367	Olympus Hydraulic Press, Evacuable Pellet Press and Magnetic Holder	
	Note: Olympus includes an integrated safety shield.	
	Options and Replacement Parts	
161-1900	Evacuable Pellet Press for 13-mm pellets	
160-8010	KBr Powder, 100 g	
161-5050	Agate Mortar and Pestle, 50 mm	
162-5300	Magnetic Film Holder for 13-mm pellets	
162-5410	Sample Card for 13-mm pellets (10 ea.)	
430-1110	Vacuum Pump, 110V	
430-1220	Vacuum Pump, 220V	
161-1070	ShakIR, Heavy Duty Sample Grinder, 110-220V	
161-1035	Stainless Steel Vial with Ball for ShakIR	
	Notes: ShakIR requires stainless steel vial and ball P/N 161-1035.	

SPECIFICATIONS

	Metric	English
Applied Force, Max	13.4 metric tons	15.0 US tons
Force Resolution	0.09 metric ton	0.10 US ton
Platen Diameter	100 mm	3.94"
Ram Stroke	20 mm	0.79"
Die Height Range	3.38 - 14.91 cm	1.33 - 5.87"
Opening Size, Max	150 x 130 mm	5.9 x 5.1"
Dimensions (W X D X H)	22.05 x 48.03 x 42.55 cm	8.68 x 18.91 x 16.75"
Weight	90.7 kg	200 lbs
Door	Fully Interlocked	
Power Supply Input Operating	100-240 VAC 7A/24 VDC, 180 W	/ maximum

Olympus is equipped with a wide access door that allows for easy insertion and removal of the pellet press. The door features an impact resistant, polycarbonate window and safety interlock which prevents operation while the door is open, making it safe for operation in a busy laboratory environment.

The ergonomic screw at the top of the press provides flexibility for short and tall die designs, yielding an open stand range from 3.38 to 15.62 cm. The optimal ram stroke of 20 mm and easy top screw adjustment speeds pellet making by reducing time required to achieve the desired force.