

CGY2169UH/C1

Rev. V1

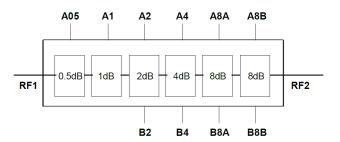
Features

- Insertion Loss: 4 dB @ 14 GHz
- Attenuation Range: 23.5 dB
- RMS Attenuation Error: 0.4 dB @ 14 GHz
- Input P1dB: 20 dBm
- Return Loss: < -10 dB @ 14 GHz (All states)
- Parallel 0 / -3.3 V Control Logic
- 2600 x 1100 μm ±5 μm
- · Tested and Inspected
- Samples Available
- Evaluation Boards Available
- Space and MIL-STD Available
- RoHS* Compliant

Applications

- Radar
- Telecommunication
- Instrumentation
- Space applications

Description


The CGY2169UH/C1 is a high performance GaAs MMIC 6-bit attenuator covering 10 - 18 GHz. This device has a nominal attenuation range of 23.5 dB in 0.5 dB steps. Employs complimentary control logic for parallel control of the four most significant attenuation levels to improve matching and drive levels.

The die is manufactured using 0.18 µm gate length pHEMT Technology. This MMIC features gold bond pads and is fully protected with silicon nitride passivation to obtain the highest level of reliability. This technology has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency.

Ordering Information

Part Number	Package
CGY2169UH/C1	Die

Block Diagram

Pad Configuration¹

Pad #	Function
IN	RF Port 1
OUT	RF Port 2
C8A	8 dB cell control
C8B	8 dB cell control
C2A	2 dB cell control
C2B	2 dB cell control
C05	0.5 dB cell control
C1	1 dB cell control
C4A	4 dB cell control
C4B	4 dB cell control
C8AA	8 dB cell control
C8BB	8 dB cell control
GND ²	Ground (back Side)
-	

- 1. Die pad names shown. See Configuration Table on page 3 for correspondence with the block diagram shown above.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

CGY2169UH/C1

Rev. V1

Electrical Specifications: Measured On Wafer, Freq. = 14 GHz, T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	_	dB	_	4	_
Noise Figure	@ Reference State	dB	_	4	_
Attenuation Range	_	dB	_	23.5	_
Input Return Loss	@ RF1	dB	_	-15	-10
Output Return Loss	@ RF2	dB	_	-20	-15
RMS Attenuation Error with Attenuation Setting ³	_	dB	_	0.4	_
Maximum Attenuation Error with Attenuation Setting	_	dB	_	±1	_
RMS Phase Error with Attenuation Setting ³	_	deg	_	11	_
Maximum Phase Error with Attenuation Setting	_	deg	_	±20	_
P1dB	_	dBm	_	+20	_

The RMS value is the root mean square of the error defined as below:
Where x_i is the difference between the measured value and the theoretical value, x_i is the mean value of the N x_i, and σx_i is the standard deviation of x_i.

$$x_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} = \sqrt{\bar{x_i}^2 + \sigma_{x_i}^2}$$

Absolute Maximum Ratings^{4,5}

Parameter	Absolute Maximum
Attenuation Control Inputs	-4.7 to 0 V
Input Power @ RF1	28 dBm
Junction Temperature	+150°C
Storage Temperature	-55°C to +150°C

^{4.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Operating Conditions

Parameter	Maximum
Attenuation Control Inputs	-4.0 to 0 V
Input Power @ RF1	19 dBm
Operating Temperature	-40°C to +85°C

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

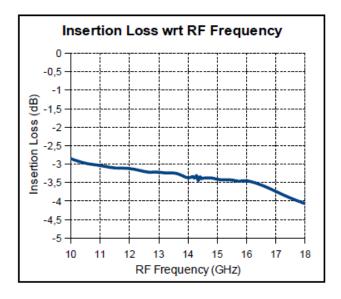
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

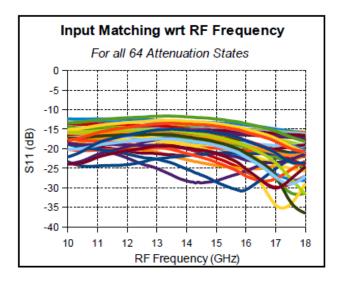
MACOM does not recommend sustained operation near these survivability limits.

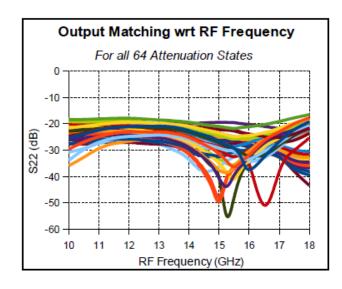
Configuration Table

Signal Name	A05	A1	A2	B2	A4	B4	A8A	B8A	A8B	B8B
Nominal Attenuation	0.5 dB	1 dB	2 dB	2 dB	4 dB	4 dB	8 dB	8 dB	8 dB	8 dB
Die Pad Name	C05	C1	C2A	C2B	C4A	C4B	C8A	C8B	C8AA	C8BB
Active Logic Level	High	High	High	Low	High	Low	High	Low	High	Low
Reference State	Low	Low	Low	High	Low	High	Low	High	Low	High

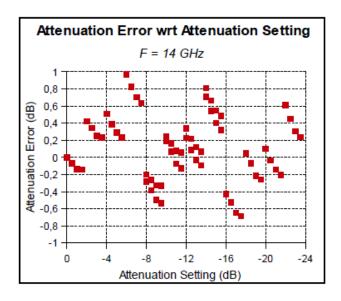
Truth Table

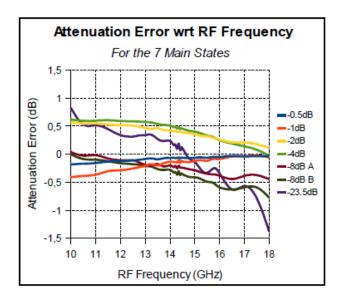

Signal Name	A05	A1	A2	B2	A4	B4	A8A	B8A	A8B	B8B
Attenuation (dB)	0.5	1	2	2	4	4	8	8	8	8
0	Low	Low	Low	High	Low	High	Low	High	Low	High
0.5	High	Low	Low	High	Low	High	Low	High	Low	High
1	Low	High								
2	Low	Low	High	Low	Low	High	Low	High	Low	High
4	Low	Low	Low	High	High	Low	Low	High	Low	High
8A	Low	Low	Low	High	Low	High	High	Low	Low	High
8B	Low	Low	Low	High	Low	High	Low	High	High	Low
10A	Low	Low	High	Low	Low	High	High	Low	Low	High
10B	Low	Low	High	Low	Low	High	Low	High	High	Low
16	Low	Low	Low	High	Low	High	High	Low	High	Low
23.5	High	High	High	Low	High	Low	High	Low	High	Low

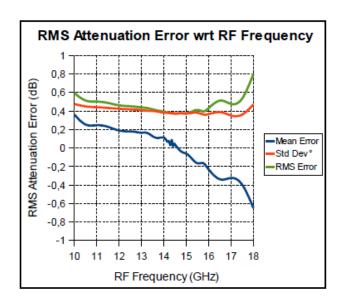

Logic Levels (V)


State	Min.	Тур.	Max.	Unit
Low	-3.6	-3.3	-2.99	V
High	-0.1	0	+0.1	V

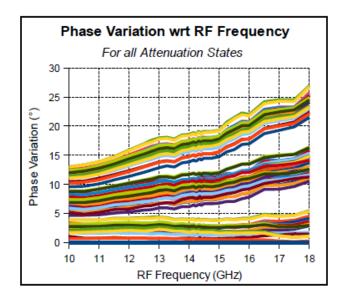
Typical Performance Curves: On Wafer Measurement Results⁶

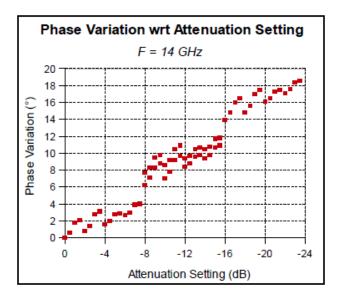




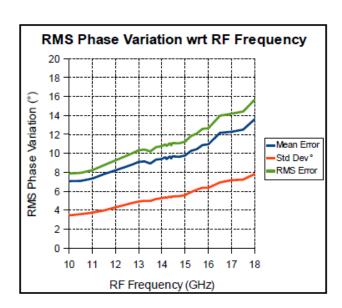

6. Measurements de-embedded for a probe inductance of 0.3 nH at both input and output.

Typical Performance Curves: On Wafer Measurement Results⁶

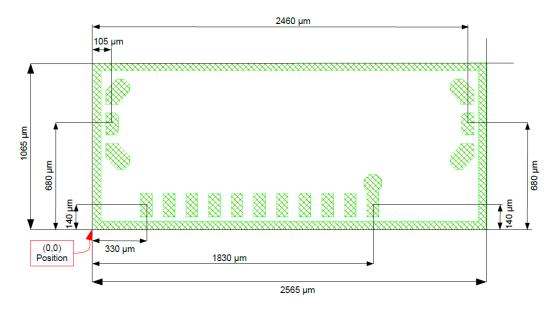




6. Measurements de-embedded for a probe inductance of 0.3 nH at both input and output.



Typical Performance Curves: On Wafer Measurement Results⁶



For further information and support please visit: https://www.macom.com/support

6. Measurements de-embedded for a probe inductance of 0.3 nH at both input and output.

Chip Size = 2600 x 1100 μ m (2565 x 1065 μ m ± 5 μ m after dicing) DC Pads = 80 x 160 μ m, spacing = 70 μ m, top metal = Au RF Pads = 85 x 150 μ m, top metal = Au Chip Thickness = 100 μ m

Pad Position⁷

B. J.N.	Oirra al Nama	Coordinate		D
Pad Name	Signal Name	Х	Υ	Description
IN	RF1	105	680	RF Port 1
OUT	RF2	960	680	RF Port 2
C8A	A8A	330	140	8 dB cell control
C8B	B8A	480	140	8 dB cell control
C2A	A2	630	140	2 dB cell control
C2B	B2	780	140	2 dB cell control
C05	A05	930	140	0.5 dB cell control
C1	A1	1080	140	1 dB cell control
C4A	A4	1230	140	4 dB cell control
C4B	B4	1380	140	4 dB cell control
C8AA	A8B	1530	140	8 dB cell control
C8BB	B8B	1680	140	8 dB cell control
GND	GND	1830	140	Ground Paddle

7. X = 0, Y = 0 at bottom left corner.

Attenuator, 6-Bit 10 - 18 GHz

CGY2169UH/C1

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.